## Parametric measures of variation around the sample mean

For a dataset of $N$ observations sampled at random from a normally distributed population of interest, the sample mean is the average value per observation given by the sum of the data divided by $N$. Always accompany the sample mean with a description of the sample variation ( $v$ or SD) or an inference about the population based on the sample variation (SE or CI).

The sample variance $(v)$ is a measure of the spread of data around the sample mean, given by the mean square deviation of the data (the average squared deviation from the mean per degree of freedom ${ }^{1}$ ). In an Analysis of Variance on two or more samples, the variance equals the MS[Error], which is used to calibrate MS[Test] in calculating the statistic $F$.
The sample standard deviation (SD) equals the square root of $v$. About $68 \%$ of normally distributed data lies within 1 SD either side of the mean, and $95 \%$ of values lie within 1.96 SD of the mean. Sample means are often described with their SD, or plotted $\pm 1$ SD.
The standard error of the mean (SE) is the SD of sample means around the population mean, and so a measure of the variability amongst the means of samples taken from the same population. It equals the square root of the contribution per observation to the sample variance: $\sqrt{ }(v / N)=\mathrm{SD} / \sqrt{ } N$. An analysis of variance is often illustrated by means $\pm 1 \mathrm{SE}$.

The confidence interval (CI) hosts the range of plausible values of the population mean $\mu$ for a population that yields the sample mean and variance. A smaller CI indicates more precision in estimating $\mu$. The Central Limit Theorem dictates that the CI applies even to non-normally distributed populations, given a large enough sample from the population.
The plot below shows a sample mean and $95 \%$ CI. Suppose the sample comprises $N=24$ chicks from a population of interest, and the response $y$ is their change in body mass (g) over the first 12 hours since hatching. The sample mean $=2.60 \mathrm{~g}$ shows that these chicks gained weight on average. The CI reveals, however, that a population with normally distributed growth around a mean of $\mu=0$ would yield sample means at least as deviant as the observed one in more than $5 \%$ of samples comprising 24 randomly selected chicks. Likewise, a population with $\mu=5 \mathrm{~g}$ would yield sample means at least as deviant in $>5 \%$ of samples. The CI encompasses the range of plausible values of $\mu$, given only the sample data and the assumption of normality. Thus we fail to reject a null hypothesis $H_{0}=0$ or 5 or anywhere within the CI. In this scenario, we cannot be confident that the conditions experienced by the sample will favour chick growth in the population.


Fig. 1. Sample from a population with unknown $\mu$.

[^0] one, meaning that there are only $N-1$ freely varying deviations.

## Formulae for parametric measures of variation

Sample mean: $\bar{y}=\sum_{i=1}^{N} y_{i} / N$

Sample variance: $v=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} /(N-1)$

Standard deviation: $\mathrm{SD}=\sqrt{v}$

Standard error of the mean: $\mathrm{SE}=\mathrm{SD} / \sqrt{N}$

Confidence interval: $\mathrm{CI}=\bar{y} \pm t_{[\alpha] N-1} \cdot \mathrm{SE}$

One-sample test of $H_{0}=\mu$ : Student's $t=(\bar{y}-\mu) / \mathrm{SE}$

The confidence interval, CI, for a threshold Type-I error $\alpha$, lies either side of the sample mean between limits $\bar{y} \pm t_{[\alpha] N-1} \cdot \mathrm{SE}$, where the quantile $t_{[\alpha] N-1}$ is the critical value of the Student's $t$ distribution at two-tailed $\alpha$ for $N-1$ degrees of freedom [given by the R command: qt (1alpha/2, N-1)]. For a very large sample, the $95 \%$ CI are well approximated by $1.96 \times$ SE. For the Fig.-1 data, $\bar{y}=2.60 \mathrm{~g}, \mathrm{SE}=1.477, N=24$, and $t_{[0.05] 23}=2.069$; so the $95 \% \mathrm{CI}=2.60 \pm$ 3.05 g .

The one-sample Student's $t$ statistic tests the compatibility of the data with a refutable null hypothesis: $H_{0}=\mu$. The data give $t=(\bar{y}-\mu) / \mathrm{SE}$, with $N-1$ degrees of freedom. The probability, $P$, of Type-I error (rejecting a true null hypothesis) can be found by evaluating $t$ against its $\alpha$-quantile, $t_{[\alpha] N-1}$ for a two-tailed test (obtained either with the R command given above, or from a table of $\alpha$-quantiles of the Student's $t$ distribution). If $t$ exceeds the critical value, then $P<\alpha$ and we reject $H_{0}$. Alternatively, $P$ is obtained directly with the R command: $2^{*}(1-\mathrm{pt}(\operatorname{abs}(\mathrm{t}), \mathrm{N}-1))$. For example, an analysis of the Fig.-1 data fails to refute the null hypothesis of zero growth ( $t_{23}=1.76, P=0.09$ ). The value of $P$ is the probability of data at least as deviant given the null hypothesis, and thus the probability of making a mistake by rejecting a true $H_{0}$. In other words, a normally distributed population with mean $\mu=0 \mathrm{~g}$ has $9 \%$ probability of yielding a sample mean at least as deviant as the observed $\bar{y}=2.60 \mathrm{~g}$. At > $5 \%$, this is too high a probability for us to reject the possibility of zero growth in the population. The result accords perfectly with the inference we drew from the $95 \% \mathrm{CI}$ (page 1 above and Fig. 1).

## R commands for plotting Fig. 1

```
# Plot of a single sample mean with 95% CI.
rm(list = ls())
#######################################################################
library(gplots) # *** requires installation of package 'gplots' ***
mu <- 0 # the null hypothesis for the value of the population mean
alpha <- 0.05 # critical threshold for Type-I error
y <- c(-3.4076, -8.5488, -1.8395, -5.6626, -2.8127, -4.6421,
    -1.6908, -4.7169, -0.6191, 1.2085, 5.1147, 7.2654, 4.4188,
    6.3951, 0.5986, -4.5055, 13.322, 17.0426, 14.66, 16.1283,
    8.5927, 2.2129, 1.8934, 2.0203) # the data
######################################################################
N <- length(y) ; DF <- N - 1
x <- c(rep("1",N)) # set x = 1 for all values of this single sample
SE <- sqrt(var(y)/N) # standard error of the mean: SE = sqrt(v/N)
CL <- SE*qt(1-alpha/2, DF) # confidence limits either side of mean
setcex <- 1.8 # set the font size for labels
par(cex = setcex, mar = c(4, 4, 1, 2) + 0.1) # define plot margins
boxplot(y) # Box and whisker plot of the data
# Plot the mean and CI using 'plotmeans' from the 'gplots' Library
plotmeans(y ~ x, p = 1-alpha, las = 1, xlab = "", ylab = "", n.label = FALSE, xaxt = "n")
# Add reference Line, axis labels, and legend
windowsFonts(A = windowsFont("Times"),
    B = windowsFont("Arial"),
    C = windowsFont("Cambria"))
abline(h = mu, lty = 3) # plot a reference line for the null hypothesis
if (mu > (mean(y)+qt(1-alpha/2,DF))*0.9) {ps = 1} else {ps = 3} # text below/above Line
text(1.3,mu,substitute(paste(italic("H"),""[0],":"~italic("\u03bc")~"= ",v), list(v=mu)),
    pos=ps, cex=setcex/2, family = "A")
mtext("x", font = 3, side = 1, line = 0.5,
        las = 1, cex = setcex, family = "A")
mtext(substitute(paste("Response mean and ",v,"% CI"), list(v=100*(1-alpha))),
        side = 2, line = 2.5, las = 0, cex = setcex, family = "B")
mtext(expression(" "~italic("y")~" "),
        side = 2, line = 2.5, las = 0, cex = setcex, family = "A")
mtext(expression(~
        bold("Fig. 1.")~" Sample from a population with unknown"~italic("\u03bc .")),
        outer = TRUE, side = 1, line = -1.5, cex = setcex, family = "C")
# Report statistics
writeLines(sprintf("Sample mean = %.2f g.",mean(y))) # mean (with trailing zero)
## Sample mean = 2.60 g.
t <- (mean(y)-mu)/SE ; P <- 2*(1-pt(abs(t),DF)) # Student's t test
tcrit <- qt(1-alpha/2, DF) # critical t at alpha for a two-tailed test
if (abs(t) > tcrit) {result <- "Reject"} else {result <- "Fail to reject"}
writeLines(c(result, " H0: mu = ", mu, sprintf(" (t = %.3f, ",t),
    sprintf("DF = %.0f, ",DF), sprintf("P = %.3f; ",P),
    sprintf("t[alpha=%.2f] ",alpha), sprintf("= %.3f).",tcrit)
    ),sep = "")
## Fail to reject H0: mu = 0 (t = 1.762, DF = 23, P = 0.091; t[alpha=0.05] = 2.069).
#
par(par(no.readonly = TRUE))
```


[^0]:    ${ }^{1}$ For a sample of $N$ data points, the variance has degrees of freedom $=N-1$. This is because by definition of the sample mean $\bar{y}$, the sum $\sum_{i}\left(y_{i}-\bar{y}\right)=0$; thus if we know $N-1$ of the deviations, we can calculate the last

