Parametric measures of variation around the sample mean

For a dataset of N observations sampled at random from a normally distributed population of interest, the *sample mean* is the average value per observation given by the sum of the data divided by N. Always accompany the sample mean with a description of the sample variation (v or SD) or an inference about the population based on the sample variation (SE or CI).

The sample *variance* (v) is a measure of the spread of data around the sample mean, given by the mean square deviation of the data (the average squared deviation from the mean per degree of freedom¹). In an Analysis of Variance on two or more samples, the variance equals the MS[Error], which is used to calibrate MS[Test] in calculating the statistic *F*.

The sample *standard deviation* (SD) equals the square root of *v*. About 68% of normally distributed data lies within 1 SD either side of the mean, and 95% of values lie within 1.96 SD of the mean. Sample means are often described with their SD, or plotted \pm 1SD.

The *standard error of the mean* (SE) is the SD of sample means around the population mean, and so a measure of the variability amongst the means of samples taken from the same population. It equals the square root of the contribution per observation to the sample variance: $\sqrt{(v/N)} = SD/\sqrt{N}$. An analysis of variance is often illustrated by means ± 1SE.

The *confidence interval* (CI) hosts the range of plausible values of the population mean μ for a population that yields the sample mean and variance. A smaller CI indicates more precision in estimating μ . The Central Limit Theorem dictates that the CI applies even to non-normally distributed populations, given a large enough sample from the population.

The plot below shows a sample mean and 95% CI. Suppose the sample comprises N = 24 chicks from a population of interest, and the response *y* is their change in body mass (g) over the first 12 hours since hatching. The sample mean = 2.60 g shows that these chicks gained weight on average. The CI reveals, however, that a population with normally distributed growth around a mean of $\mu = 0$ would yield sample means at least as deviant as the observed one in more than 5% of samples comprising 24 randomly selected chicks. Likewise, a population with $\mu = 5$ g would yield sample means at least as deviant in > 5% of samples. The CI encompasses the range of plausible values of μ , given only the sample data and the assumption of normality. Thus we fail to reject a null hypothesis $H_0 = 0$ or 5 or anywhere within the CI. In this scenario, we cannot be confident that the conditions experienced by the sample will favour chick growth in the population.

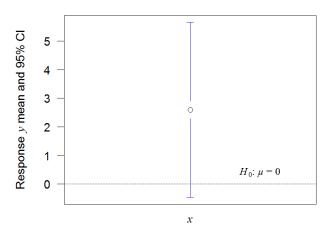


Fig. 1. Sample from a population with unknown μ .

¹ For a sample of *N* data points, the variance has degrees of freedom = N - 1. This is because by definition of the sample mean \overline{y} , the sum $\sum_{i} (y_i - \overline{y}) = 0$; thus if we know N - 1 of the deviations, we can calculate the last one, meaning that there are only N - 1 freely varying deviations.

Formulae for parametric measures of variation

Sample mean:
$$\overline{y} = \sum_{i=1}^{N} y_i / N$$

Sample variance:
$$v = \sum_{i=1}^{N} (y_i - \overline{y})^2 / (N-1)$$

Standard deviation: $SD = \sqrt{v}$

Standard error of the mean: $SE = SD/\sqrt{N}$

Confidence interval: $CI = \overline{y} \pm t_{[\alpha]N-1} \cdot SE$

One-sample test of $H_0 = \mu$: Student's $t = (\overline{y} - \mu)/SE$

The confidence interval, CI, for a threshold Type-I error α , lies either side of the sample mean between limits $\overline{y} \pm t_{[\alpha]N-1}$ ·SE, where the quantile $t_{[\alpha]N-1}$ is the critical value of the Student's *t* distribution at two-tailed α for N-1 degrees of freedom [given by the R command: qt(1alpha/2, N-1)]. For a very large sample, the 95% CI are well approximated by 1.96×SE. For the Fig.-1 data, $\overline{y} = 2.60$ g, SE = 1.477, N = 24, and $t_{[0.05] 23} = 2.069$; so the 95% CI = 2.60 ± 3.05 g.

The one-sample Student's *t* statistic tests the compatibility of the data with a refutable null hypothesis: $H_0 = \mu$. The data give $t = (\overline{y} - \mu)/SE$, with N - 1 degrees of freedom. The probability, *P*, of Type-I error (rejecting a true null hypothesis) can be found by evaluating *t* against its α -quantile, $t_{[\alpha]N-1}$ for a two-tailed test (obtained either with the R command given above, or from a table of α -quantiles of the Student's *t* distribution). If *t* exceeds the critical value, then $P < \alpha$ and we reject H_0 . Alternatively, *P* is obtained directly with the R command: 2*(1 - pt(abs(t), N-1)). For example, an analysis of the Fig.-1 data fails to refute the null hypothesis of zero growth ($t_{23} = 1.76$, P = 0.09). The value of *P* is the probability of data at least as deviant given the null hypothesis, and thus the probability of making a mistake by rejecting a true H_0 . In other words, a normally distributed population with mean $\mu = 0$ g has 9% probability of yielding a sample mean at least as deviant as the observed $\overline{y} = 2.60$ g. At > 5%, this is too high a probability for us to reject the possibility of zero growth in the population. The result accords perfectly with the inference we drew from the 95% CI (page 1 above and Fig. 1).

R commands for plotting Fig. 1

```
# Plot of a single sample mean with 95% CI.
rm(list = ls())
library(gplots) # *** requires installation of package 'gplots' ***
               # the null hypothesis for the value of the population mean
mu <- 0
alpha <- 0.05 # critical threshold for Type-I error
y <- c(-3.4076, -8.5488, -1.8395, -5.6626, -2.8127, -4.6421,
       -1.6908, -4.7169, -0.6191, 1.2085, 5.1147, 7.2654, 4.4188,
       6.3951, 0.5986, -4.5055, 13.322, 17.0426, 14.66, 16.1283,
       8.5927, 2.2129, 1.8934, 2.0203) # the data
N <- length(y) ; DF <- N - 1
x <- c(rep("1", N))</pre>
                          # set x = 1 for all values of this single sample
                         # standard error of the mean: SE = sqrt(v/N)
SE <- sqrt(var(y)/N)</pre>
CL <- SE*qt(1-alpha/2, DF) # confidence limits either side of mean
setcex <- 1.8</pre>
                          # set the font size for labels
par(cex = setcex, mar = c(4, 4, 1, 2) + 0.1) # define plot margins
boxplot(y) # Box and whisker plot of the data
# Plot the mean and CI using 'plotmeans' from the 'gplots' library
plotmeans(y ~ x, p = 1-alpha, las = 1, xlab = "", ylab = "", n.label = FALSE, xaxt = "n")
# Add reference line, axis labels, and legend
windowsFonts(A = windowsFont("Times"),
             B = windowsFont("Arial"),
             C = windowsFont("Cambria"))
abline(h = mu, lty = 3) # plot a reference line for the null hypothesis
if (mu > (mean(y)+qt(1-alpha/2,DF))*0.9) {ps = 1} else {ps = 3} # text below/above line
text(1.3,mu,substitute(paste(italic("H"),""[0],":"~italic("\u03bc")~"= ",v), list(v=mu)),
     pos=ps, cex=setcex/2, family = "A")
mtext("x", font = 3, side = 1, line = 0.5,
      las = 1, cex = setcex, family = "A")
mtext(substitute(paste("Response mean and ",v,"% CI"), list(v=100*(1-alpha))),
      side = 2, line = 2.5, las = 0, cex = setcex, family = "B")
                                                       "),
                     "~italic("y")~"
mtext(expression("
      side = 2, line = 2.5, las = 0, cex = setcex, family = "A")
mtext(expression(~
      bold("Fig. 1.")~" Sample from a population with unknown"~italic("\u03bc .")),
      outer = TRUE, side = 1, line = -1.5, cex = setcex, family = "C")
# Report statistics
writeLines(sprintf("Sample mean = %.2f g.",mean(y))) # mean (with trailing zero)
## Sample mean = 2.60 g.
t <- (mean(y)-mu)/SE ; P <- 2*(1-pt(abs(t),DF)) # Student's t test</pre>
tcrit <- qt(1-alpha/2, DF) # critical t at alpha for a two-tailed test</pre>
if (abs(t) > tcrit) {result <- "Reject"} else {result <- "Fail to reject"}</pre>
sprintf("t[alpha=%.2f] ",alpha), sprintf("= %.3f).",tcrit)
             ), sep = "")
## Fail to reject H0: mu = 0 (t = 1.762, DF = 23, P = 0.091; t[alpha=0.05] = 2.069).
par(par(no.readonly = TRUE))
```